Rapport de projet de simulation numérique
Malin comme un...blob

Le 27 Mai 2020

Groupe 4

ALQUIER Rodolphe
BALANNEC Ancelin
CAVALIER Pierre
CONTENTIN Théo
HARDY Paul

Université Paris-Saclay
L2 Double Licence Maths-Physique

UNIVERSITE

S PARIS

Comprendre le monde,
construire l'avenir

o
universite

PARIS-SACLAY

Table des matiéres
1_Introduction
2 Présentation du modele]

|3 Reésolution mathématique AP = 1|

[4 Résolution informatique|

[Observations et analyse des résultats|
l6__Execution du codel
[T_Conclusion|

10

10

1 Introduction

Durant ce projet, nous avons travaillé sur ”le blob” ; cet organisme unicellulaire qui peut croitre de
plusieurs centimetres par heure et devient donc une cellule macroscopique. Le Physarum polycephalum, de
son vrai nom, peut créer des structures internes, des ramifications permettant d’acheminer la nourriture des
sources aux puits. Dans ce rapport, nous avons cherché a modéliser un blob de la maniere la plus simple pos-
sible : des points (ou neeuds) et des branches (ou ramifications). Nous avons fait varier plusieurs parametres
afin de balayer le plus de dispositions possibles. Pour identifier les nceuds, nous les avons numérotés de 0
a4 N -1 avec N le nombre total de points (N est un carré d’entier pour le maillage rectangulaire) de cette
maniere :

12

13/

10—

8 9 \
5 [

/ S—— 3

1

2 Présentation du modele

~l

On suppose qu’a l'état initial le blob est un réseau de N noeuds tous équivalents numérotés de 0
a N — 1. Ces noeuds sont reliés entre eux par des branches dans lesquelles circuleront les nutriments. Les
branches ont des longueurs et diametres (ou épaisseurs) variables . Le débit Q);; dans la branche reliant le
nceud ¢ au neeud 5 est donné par la loi de Poiseuille :

7'(")”4 DZ
Qij=——pj-pi)=—2(pj - pi 1
j 877%(]) Lij(J) (1)

ot1, L;; est la longueur de la branche, 7 est la viscosité du liquide, p; et p; les pressions au niveau des nceuds
i et j. Au niveau du noeud 4, le débit est positif lorsque le fluide va vers celui-ci. Comme la viscosité est la
meéme partout, on introduit la conductivité D;;.

Si le noeud k est une source, Y. Qx;j = I < 0. Ici I}, est le débit total sortant du nceud. De méme, si le noeud [
J

est un puits, }.Q;; = I; > 0. Pour les autres nceuds i, la conservation du débit s’ecrit : }.Q;; = I; = 0.
J J

Enfin, tout ce qui rentre dans le réseau doit en ressortir. Ceci conduit a la relation : .1, + >I; = 0.
k 1

On remarque qu’il est possible de déterminer les pressions p; de tous les nceuds en résolvant un systéme
de N équations & N inconnues, ce qui donne AP = I avec A une matrice (N x N), P un vecteur & N dimen-
sions ol la i-éme ligne correspond & la pression p; , et I est un vecteur & N dimensions dont la i-éme ligne
correspond au débit total I; au niveau du nceud 1.

En résolvant ce systeme on obtient toutes les pressions, et ainsi on peut calculer les débits ();; dans chaque
branche reliant le nceud i et j.

Le rayon (ou épaisseur) r de chaque branche évolue au cours du temps. Il tend & diminuer avec le temps si
le débit de nutriments le traversant est faible. En revanche si un débit @;; non nul s’écoule dans la branche,
son rayon est non seulement stabilisé, mais il sera d’autant plus grand que le débit sera élevé (jusqu’a un
certain point).

La conductivité D;; évolue avec le temps ¢ de la maniere suivante :

dDij _ .~ _Dij
= (@)

(2)

Avec 7 le temps caractéristique de disparition d’une branche et f une fonction modélisant la réponse de la
branche au débit la traversant :

1@ 120 ®)

Et pendant un temps dt << 7 nous obtenons :

T

Dy (t+dt) ~ Di;(t) + (f(Qi5) -)dt (4)

3 Résolution mathématique AP =1

Comme expliqué ci-dessus on cherche la matrice A qui nous permettra d’obtenir P la matrice corres-
pondant aux pressions de chaque noeud.

a11 - Q1IN P1 I,

aNi1 ** AGNN PN In

I =3Qi (6)

Or Q;; est nul si i et j ne sont pas voisins, on note ainsi V[¢] le voisinage de I et ainsi :

Li=), L“(Pj_pi) (7)
jevi[i] ~u
On obtient finalement :
U PR
jevi[i] v
aij = | 2u si j e V[i] (8)
0 sijé Vi

Dans notre cas, la matrice A est de rang N — 1 et pour résoudre ce systeme, on utilise la méthode des
moindres carrés avec le module np.linalg.lstsq de Numpy.

4 Résolution informatique

Pour répondre au probleme qui nous a été posé nous avons choisi de travailler avec deux classes, une
pour les noeuds du réseau et une pour le blob en lui méme.

La classe des noeuds nous permet de répertorier toutes les informations sur un nceud. A un point n
on associe ses coordonnés x et y comme vu précedemment et une légere fluctuation aléatoire dans un carré
de coté 0.5 et de centre le point. A ce point, on associe sa liste de voisins (create_voisins) et & partir de cette
derniére on obtient la distance par rapport aux voisins (get_L) et la conductivité (get_D) par rapport a ses
voisins.

A partir de cette classe, nous avons créer la classe blob qui génére tout le maillage avec des options qui
permettent différents type de situations ainsi qu’une répartition des puits et des sources aussi bien constante
que variable. De plus cette classe initialise aussi les parametres des nceuds ainsi que ’'intensité des sources
et des puits.

De plus, nous avons rajouté une fonction pour répresenter graphiquement chaque partie du blob (plot
(plot3D dans le cas & trois dimensions)), que ce soit les noeuds (plot_noeud), les branches (plot_branch),
les puits (plot_puits), les sources (plot_sources). Nous avons ajouté une fonction (get noeud) qui renvoie
I'objet nceud correspondant & I'indice n donné, ainsi que des fonctions qui calculent la matrice A comme vu
précedemment dans la partie 3, qui permettent d’obtenir l'intensité (get_I) en un noeud et qui calculent la
pression (calcule_p) en un noeud donné.

Ensuite nous avons la fonction (calcule D) qui permet d’avancer a I'instant ¢ +dt, & partir des données
a l'instant ¢ en calculant la conductivité a partir de I'équation (4). Pour cette fonction nous avons di résoudre
une équation différentielle(equa_diff).

Nous avons, en outre, créé des sous-classes de la classe noeud dont le maillage est différent (hex-
noeud, Delaunoeud...) pour que ces sous-classes héritent des attributs de noeud tout en ayant la possibilité
de recoder la fonction create_voisins qui ne marche plus quand on sort du maillage rectangulaire.

5 Observations et analyse des résultats

Nous avons donc testé notre blob dans la forme la plus simple, avec un puit et une source fixés. Avec
7 =1ety =18 et un pas de temps dt = 0.01 nous avons lancé la simulation ce qui donne 1’évolution
ci-dessous :

Situation initiale Apres 500 itérations Apres 1000 itérations

La simulation est donc cohérente avec la théorie, le blob crée un chemin optimisé entre le puit et la
source, la derniere branche restante correspond au plus petit chemin reliant la source au puit.

Rajoutons plusieurs puits et sources a différents endroits (toujours fixes dans le temps) et analysons les
résultats apres 1000 itérations. Les trois images résultantes sont donc issues de situations initiales distinctes.

2

=

On remarque sur ces trois exemples que la connexion entre les puits et les sources est optimale, il n’y
a pas de maniere plus courte de relier les sources aux puits que celle effectuée par le blob.

Nous allons désormais nous intéresser a 'impact de 7 et de - sur I’évolution du blob. Nous avons fait
varier la valeur de 7 entre 0.1 et 100. Voici ce que nous avons observé :

7=0.1 7=10 7 =100

Les graphes représentent respectivement 1’évolution du blob a 7 =0.1, 10 et 100 apres 1000 itérations.
On observe que plus la valeur de 7 est petite, plus I’état final (I’état dans lequel il ne reste que les chemins
optimisés entre les sources et les puits) est atteint rapidement. Ce résultat était prévisible puisque la dérivée

temporelle de la conductivité dépend de —%. Nous voyons également que les branches au niveau des puits et
des sources sont plus épaisses quand 7 augmente.

Nous avons étudié 'influence de v sur 1’évolution du blob. Voici nos résultats :

v=-1.8 v=0.5 v=5
Comme précédemment pour 7 nous avons étudié la forme finale du blob apres 1000 itérations pour v = —1.8,
0.5 et 5. On note que la vitesse de croissance augmente lorsque v augmente ce qui est logique étant donné

que plus v est élevé plus f(Q) le sera aussi et la dérivée temporelle de la conductivité dépend de f(Q).

On cherche maintenant ce qu’il se passe lorsque 1’on impose un débit au réseau.

Isource =-1let Ipuit =1 ISOU«’"CE =-10 et IPUit =10 Isource =-50 et Ipuit =50

Les 3 graphes sont les résultats obtenus apres 700 itérations. La premiere chose que l'on remarque est que
plus le débit total ('intensité) imposé est grand, plus le nombre de branche ayant un flux élevé qui les traverse
est grand. Le résultat est le méme quand les sources sont immobiles et les puits mobiles ce qui est logique
puisque les branches seront aussi larges dans les deux sens de parcours de la nourriture. Nous avons aussi
réitérer I'expérience avec des intensités variables sur chaque puits et chaque sources. Il en résulte que les
branches seront d’autant plus épaisses (r sera grand) au niveau d’un point que l'intensité, en valeur absolue,
sera grande en ce point.

Nous avons développé un maillage triangulaire qui fonctionne selon toutes les régles citées précédemment
mais ou les polygones formés sont des triangles et chaque point -hormis ceux sur les bords- a six voisins.
Nous avons voulu voir ce qu’il se passerait si I’on fixait une source et qu’a chaque pas de temps, la position
des puits variait. Voici le résultat pour une source et trois puits avec un maillage triangulaire :

\ N/ \/\/
SERIEGERSOK |)
v WAYANAV . VAVLVAVZ ,
VSOSSNS2AZSD "
SHRSIRK ‘

AN
\WAVAVAVVAVAANA %

\/

D

Blob initial Blob apres 1000 itérations

Des scientifiques japonais avaient réussi a montrer que le blob était capable de retrouver la structure
du réseau du chemin de fer japonais. Nous pouvons voir que notre simulation illustre ce comportement.
Imaginons que la source (point bleu) correspond & une grande ville comme Paris. Dans cette analogie, les
branches représentent les routes reliant Paris aux villes voisines. Plus une branche est épaisse, plus la route
est empruntée par les voyageurs. Autrement dit, plus une branche est épaisse, plus la probabilité qu’'un puit

s’y trouve a proximité est élevée. Ainsi nous voyons un réseau routier optimisé qui permet de relier Paris
aux villes voisines.

On se retrouve avec globalement le méme réseau si on fixe les puits et non plus les sources ce qui est

logique étant donné que les mémes chemins se développent, méme si les acheminements se font dans le sens
inverse, la conductivité ne change pas.

Blob initial Blob apres 1000 itérations

Dans la simulation suivante, nous avons fait varier les positions des puits et des sources a chaque pas
de temps :

SN
Situation initiale Apres 500 itérations Apres 1000 itérations

On observe que dans le cas ou les sources et les puits ne sont pas fixes, la conductivité de tous les chemins
décroit jusqu’a atteindre un certain stade a partir duquel le blob sélectionne quelles branches il délaisse et
lesquelles il garde. Le blob se retrouve donc avec un maillage beaucoup plus espacé et un réseau périphérique
s'installe. Etant donné que les puits et les sources sont mobiles, le blob ne garde que les chemins ”utiles”
permettant de relier facilement deux points alétoirement placés sur les nceuds.

Nous avons par la suite fait une [triangulation de Delaunay|a partir d’'un nuage de points aléatoire. On
utilise la marche de Jarvis/ qui permet d’obtenir un polygone convexe qui englobe le nuage de point a partir
de points de ce dernier. Ensuite on obtient une triangulation quelconque grace a la méthode des oreilles
a partir de cette derniere on procede a un basculement ce qui permet de transformer deux triangles avec
un angle obtus qui forment un quadrilatere, avec donc deux sommets en communs, en deux triangles avec
uniquement des angles aigus respectant ainsi les conditions de Delaunay.

Apres 500 itérations Apres 1000 itérations

Situation initiale Apres 500 itérations Apres 1000 itérations

Sans grande surprise, le blob a le méme comportement que sur un maillage rectangulaire : il cherche
a relier les sources et les puits de maniere optimale.

https://fr.wikipedia.org/wiki/Triangulation_de_Delaunay
https://fr.wikipedia.org/wiki/Marche_de_Jarvis
https://fr.wikipedia.org/wiki/Triangulation_d%27un_polygone
https://fr.wikipedia.org/wiki/Triangulation_de_Delaunay#Une_d%C3%A9finition_visuelle_:_le_basculement

Nous avons essayé avec un autre maillage, en trois dimensions cette fois, que 1’on appellera maillage
cubique. Ce maillage est relativement différent des autres car on voit bien que pour optimiser ses trajets le
blob reste sur la méme stratégie qu’avant (& savoir un jeu de branche reliant tous les puits et sources deux
a deux de maniere optimale). Cependant on observe des branches annexes qui mettent beaucoup plus de
temps a s’effacer.

I,
I,

P
1 T
2 —
y =
B o

Apres 500 itérations Apres 1000 itérations

Situation initiale

6 Execution du code

Pour faire tourner les simulations, nous avons codé une interface graphique avec le module tkinter
de Python. Elle consiste en une liste de boutons correspondant & chaque parametre de la simulation. La
recherche de documentation pour ce module nous ayant posé particulierement probléme.

Simulation : Le Blob

Type de maillage : Nombre de points : Configuration des sources: Source 1 Temps caractéristique : Tau Nombre d'itérations Rendu toutes les
" Maille rectangulaire 150 < Chaque source -1 3 = 1o 1000 100
 Maille triangulaire Nombre de sources : " Distribution aléatoire Source 2 Constante d'évolution : Gamma [Figures intermediaires iterations
@ Triangulation Delaunay |3 = @ Au choix 2 = 1.8 [Puits aleatoires
 Blob 3D Nombre de puits : Source 3 Pas de temps : dt [~ Sources aleatoires

2 = 5 = 0.3
Puit 1
g z
Puit 2
=
=
Lancer la simulation

Malheureusement cette interface ne fonctionne pas si le code est exécuté sur serveur, il faut donc
se contenter d’appeler les fonctions avec leur parametres : la documentation étant fournie dans le fichier
.ipynb. Pour ouvrir 'interface il faut donc travailler avec le fichier .py en local.

7 Conclusion

A travers ce projet nous avons pu simuler informatiquement le comportement d’un blob en présence
de sources et de puits de nourriture et ainsi nous rendre compte que ce dernier choisissait stratégiquement les
branches du maillage a entretenir et celles a délaisser. A travers les nombreux maillages étudiés, nous avons
pu constater que le blob arrivait a reproduire ce comportement quelque soit le maillage initial. Cependant
lorsque les sources et/ou les puits changeaient de place & chaque pas de temps le blob développait des
embranchements en ne gardant actives que les routes "utiles”. Les parameétres de I'expérience, 7 et de 7,
n’influent que sur la vitesse de ’expérience et non pas sur le résultat final. Les résultats obtenus montrent
cependant que le blob est capable, par exemple, de trouver le moyen de transport optimal entre un nombre

10

donné de point de départ (source) et de point d’arrivée (puit). En matiére d’optimisation on pourrait aussi
simuler un trafic ferroviaire en modifiant I'intensité des point d’arrivée en fonction de la population d’une
ville ce qui permettrait de savoir combien de trains il faudrait envoyer par heure dans certaines gares.
Evidemment le blob trouve son utilité dans les probléemes impliquant des réseaux avec des débits que ce
soit en hydrostatisque ou en électrocinétique dans des circuits fermés avec des sources de courants et des
”puits” /annihilateur de courant. En guise d’ouverture, il serait possible d’étendre le probléme du blob a des
dimensions plus élevées ou de travailler avec des sources a l'extérieur du blob et de rajouter la possibilité au
blob de déplacer ses nceuds moyennant un colit en énergie.

11

Los Commandos

12

	Introduction
	Présentation du modèle
	Résolution mathématique AP = I
	Résolution informatique
	Observations et analyse des résultats
	Éxecution du code
	Conclusion

