
Rapport de projet de simulation numérique
Malin comme un...blob

Le 27 Mai 2020

Groupe 4

ALQUIER Rodolphe
BALANNEC Ancelin

CAVALIER Pierre
CONTENTIN Théo

HARDY Paul

Université Paris-Saclay
L2 Double Licence Maths-Physique

1



Table des matières

1 Introduction 3

2 Présentation du modèle 3

3 Résolution mathématique AP = I 4

4 Résolution informatique 5

5 Observations et analyse des résultats 6

6 Éxecution du code 10

7 Conclusion 10

2



1 Introduction

Durant ce projet, nous avons travaillé sur ”le blob” ; cet organisme unicellulaire qui peut crôıtre de
plusieurs centimètres par heure et devient donc une cellule macroscopique. Le Physarum polycephalum, de
son vrai nom, peut créer des structures internes, des ramifications permettant d’acheminer la nourriture des
sources aux puits. Dans ce rapport, nous avons cherché à modéliser un blob de la manière la plus simple pos-
sible : des points (ou nœuds) et des branches (ou ramifications). Nous avons fait varier plusieurs paramètres
afin de balayer le plus de dispositions possibles. Pour identifier les nœuds, nous les avons numérotés de 0
à N − 1 avec N le nombre total de points (N est un carré d’entier pour le maillage rectangulaire) de cette
manière :

2 Présentation du modèle

On suppose qu’à l’état initial le blob est un réseau de N nœuds tous équivalents numérotés de 0
à N − 1. Ces nœuds sont reliés entre eux par des branches dans lesquelles circuleront les nutriments. Les
branches ont des longueurs et diamètres (ou épaisseurs) variables . Le débit Qij dans la branche reliant le
nœud i au nœud j est donné par la loi de Poiseuille :

Qij =
πr4

8ηLij
(pj − pi) =

Dij

Lij
(pj − pi) (1)

où, Lij est la longueur de la branche, η est la viscosité du liquide, pi et pj les pressions au niveau des nœuds
i et j. Au niveau du nœud i, le débit est positif lorsque le fluide va vers celui-ci. Comme la viscosité est la
même partout, on introduit la conductivité Dij .

Si le nœud k est une source, ∑
j
Qkj = Ik < 0. Ici Ik est le débit total sortant du nœud. De même, si le nœud l

est un puits, ∑
j
Qlj = Il > 0. Pour les autres nœuds i, la conservation du débit s’ecrit : ∑

j
Qij = Ii = 0.

Enfin, tout ce qui rentre dans le réseau doit en ressortir. Ceci conduit à la relation : ∑
k
Ik +∑

l
Il = 0.

3



On remarque qu’il est possible de déterminer les pressions pi de tous les nœuds en résolvant un système
de N équations à N inconnues, ce qui donne AP = I avec A une matrice (N ×N), P un vecteur à N dimen-
sions où la i-ème ligne correspond à la pression pi , et I est un vecteur à N dimensions dont la i-ème ligne
correspond au débit total Ii au niveau du nœud i.
En résolvant ce système on obtient toutes les pressions, et ainsi on peut calculer les débits Qij dans chaque
branche reliant le nœud i et j.

Le rayon (ou épaisseur) r de chaque branche évolue au cours du temps. Il tend à diminuer avec le temps si
le débit de nutriments le traversant est faible. En revanche si un débit Qij non nul s’écoule dans la branche,
son rayon est non seulement stabilisé, mais il sera d’autant plus grand que le débit sera élevé (jusqu’à un
certain point).

La conductivité Dij évolue avec le temps t de la manière suivante :

dDij

dt
= f(Qij) −

Dij

τ
(2)

Avec τ le temps caractéristique de disparition d’une branche et f une fonction modélisant la réponse de la
branche au débit la traversant :

f(Q) = ∣Q∣γ
1 + ∣Q∣γ (3)

Et pendant un temps dt << τ nous obtenons :

Dij(t + dt) ≈Dij(t) + (f(Qij) −
Dij

τ
)dt (4)

3 Résolution mathématique AP = I

Comme expliqué ci-dessus on cherche la matrice A qui nous permettra d’obtenir P la matrice corres-
pondant aux pressions de chaque nœud.

⎛
⎜⎜⎜⎜⎜
⎝

a11 ⋯ a1N

⋮ ⋱ ⋮

aN1 ⋯ aNN

⎞
⎟⎟⎟⎟⎟
⎠

×

⎛
⎜⎜⎜⎜⎜
⎝

p1

⋮

pN

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

I1

⋮

IN

⎞
⎟⎟⎟⎟⎟
⎠

(5)

Où

Ii = ∑
j

Qij (6)

4



Or Qij est nul si i et j ne sont pas voisins, on note ainsi V [i] le voisinage de I et ainsi :

Ii = ∑
j∈V [i]

Dij

Lij
(pj − pi) (7)

On obtient finalement :

aij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∑
j∈V [i]

Dij

Lij
si j = i

Dij

Lij
si j ∈ V [i]

0 si j /∈ V [i]

(8)

Dans notre cas, la matrice A est de rang N − 1 et pour résoudre ce système, on utilise la méthode des
moindres carrés avec le module np.linalg.lstsq de Numpy.

4 Résolution informatique

Pour répondre au problème qui nous a été posé nous avons choisi de travailler avec deux classes, une
pour les nœuds du réseau et une pour le blob en lui même.

La classe des noeuds nous permet de répertorier toutes les informations sur un nœud. À un point n
on associe ses coordonnés x et y comme vu précedemment et une légère fluctuation aléatoire dans un carré
de côté 0.5 et de centre le point. À ce point, on associe sa liste de voisins (create voisins) et à partir de cette
dernière on obtient la distance par rapport aux voisins (get L) et la conductivité (get D) par rapport à ses
voisins.

À partir de cette classe, nous avons créer la classe blob qui génère tout le maillage avec des options qui
permettent différents type de situations ainsi qu’une répartition des puits et des sources aussi bien constante
que variable. De plus cette classe initialise aussi les paramètres des nœuds ainsi que l’intensité des sources
et des puits.

De plus, nous avons rajouté une fonction pour répresenter graphiquement chaque partie du blob (plot
(plot3D dans le cas à trois dimensions)), que ce soit les nœuds (plot noeud), les branches (plot branch),
les puits (plot puits), les sources (plot sources). Nous avons ajouté une fonction (get noeud) qui renvoie
l’objet nœud correspondant à l’indice n donné, ainsi que des fonctions qui calculent la matrice A comme vu
précedemment dans la partie 3, qui permettent d’obtenir l’intensité (get I) en un nœud et qui calculent la
pression (calcule p) en un nœud donné.

Ensuite nous avons la fonction (calcule D) qui permet d’avancer à l’instant t+dt, à partir des données
à l’instant t en calculant la conductivité à partir de l’équation (4). Pour cette fonction nous avons dû résoudre
une équation différentielle(equa diff).

Nous avons, en outre, créé des sous-classes de la classe noeud dont le maillage est différent (hex-
noeud, Delaunoeud...) pour que ces sous-classes héritent des attributs de nœud tout en ayant la possibilité
de recoder la fonction create voisins qui ne marche plus quand on sort du maillage rectangulaire.

5



5 Observations et analyse des résultats

Nous avons donc testé notre blob dans la forme la plus simple, avec un puit et une source fixés. Avec
τ = 1 et γ = 1.8 et un pas de temps dt = 0.01 nous avons lancé la simulation ce qui donne l’évolution
ci-dessous :

Situation initiale Après 500 itérations Après 1000 itérations

La simulation est donc cohérente avec la théorie, le blob crée un chemin optimisé entre le puit et la
source, la dernière branche restante correspond au plus petit chemin reliant la source au puit.

Rajoutons plusieurs puits et sources à différents endroits (toujours fixes dans le temps) et analysons les
résultats après 1000 itérations. Les trois images résultantes sont donc issues de situations initiales distinctes.

On remarque sur ces trois exemples que la connexion entre les puits et les sources est optimale, il n’y
a pas de manière plus courte de relier les sources aux puits que celle effectuée par le blob.

Nous allons désormais nous intéresser à l’impact de τ et de γ sur l’évolution du blob. Nous avons fait
varier la valeur de τ entre 0.1 et 100. Voici ce que nous avons observé :

τ = 0.1 τ = 10 τ = 100

Les graphes représentent respectivement l’évolution du blob à τ = 0.1, 10 et 100 après 1000 itérations.
On observe que plus la valeur de τ est petite, plus l’état final (l’état dans lequel il ne reste que les chemins
optimisés entre les sources et les puits) est atteint rapidement. Ce résultat était prévisible puisque la dérivée

6



temporelle de la conductivité dépend de − 1
τ

. Nous voyons également que les branches au niveau des puits et
des sources sont plus épaisses quand τ augmente.

Nous avons étudié l’influence de γ sur l’évolution du blob. Voici nos résultats :

γ = −1.8 γ = 0.5 γ = 5

Comme précédemment pour τ nous avons étudié la forme finale du blob après 1000 itérations pour γ = −1.8,
0.5 et 5. On note que la vitesse de croissance augmente lorsque γ augmente ce qui est logique étant donné
que plus γ est élevé plus f(Q) le sera aussi et la dérivée temporelle de la conductivité dépend de f(Q).

On cherche maintenant ce qu’il se passe lorsque l’on impose un débit au réseau.

Isource = −1 et Ipuit = 1 Isource = −10 et Ipuit = 10 Isource = −50 et Ipuit = 50

Les 3 graphes sont les résultats obtenus après 700 itérations. La première chose que l’on remarque est que
plus le débit total (l’intensité) imposé est grand, plus le nombre de branche ayant un flux élevé qui les traverse
est grand. Le résultat est le même quand les sources sont immobiles et les puits mobiles ce qui est logique
puisque les branches seront aussi larges dans les deux sens de parcours de la nourriture. Nous avons aussi
réitérer l’expérience avec des intensités variables sur chaque puits et chaque sources. Il en résulte que les
branches seront d’autant plus épaisses (r sera grand) au niveau d’un point que l’intensité, en valeur absolue,
sera grande en ce point.

7



Nous avons développé un maillage triangulaire qui fonctionne selon toutes les règles citées précédemment
mais où les polygones formés sont des triangles et chaque point -hormis ceux sur les bords- a six voisins.
Nous avons voulu voir ce qu’il se passerait si l’on fixait une source et qu’à chaque pas de temps, la position
des puits variait. Voici le résultat pour une source et trois puits avec un maillage triangulaire :

Blob initial Blob après 1000 itérations

Des scientifiques japonais avaient réussi à montrer que le blob était capable de retrouver la structure
du réseau du chemin de fer japonais. Nous pouvons voir que notre simulation illustre ce comportement.
Imaginons que la source (point bleu) correspond à une grande ville comme Paris. Dans cette analogie, les
branches représentent les routes reliant Paris aux villes voisines. Plus une branche est épaisse, plus la route
est empruntée par les voyageurs. Autrement dit, plus une branche est épaisse, plus la probabilité qu’un puit
s’y trouve à proximité est élevée. Ainsi nous voyons un réseau routier optimisé qui permet de relier Paris
aux villes voisines.

On se retrouve avec globalement le même réseau si on fixe les puits et non plus les sources ce qui est
logique étant donné que les mêmes chemins se développent, même si les acheminements se font dans le sens
inverse, la conductivité ne change pas.

Blob initial Blob après 1000 itérations

8



Dans la simulation suivante, nous avons fait varier les positions des puits et des sources à chaque pas
de temps :

Situation initiale Après 500 itérations Après 1000 itérations

On observe que dans le cas où les sources et les puits ne sont pas fixes, la conductivité de tous les chemins
décrôıt jusqu’à atteindre un certain stade à partir duquel le blob sélectionne quelles branches il délaisse et
lesquelles il garde. Le blob se retrouve donc avec un maillage beaucoup plus espacé et un réseau périphérique
s’installe. Étant donné que les puits et les sources sont mobiles, le blob ne garde que les chemins ”utiles”
permettant de relier facilement deux points alétoirement placés sur les nœuds.

Nous avons par la suite fait une triangulation de Delaunay à partir d’un nuage de points aléatoire. On
utilise la marche de Jarvis qui permet d’obtenir un polygone convexe qui englobe le nuage de point à partir
de points de ce dernier. Ensuite on obtient une triangulation quelconque grâce à la méthode des oreilles
à partir de cette dernière on procède à un basculement ce qui permet de transformer deux triangles avec
un angle obtus qui forment un quadrilatère, avec donc deux sommets en communs, en deux triangles avec
uniquement des angles aigus respectant ainsi les conditions de Delaunay.

Situation initiale Après 500 itérations Après 1000 itérations

Situation initiale Après 500 itérations Après 1000 itérations

Sans grande surprise, le blob a le même comportement que sur un maillage rectangulaire : il cherche
à relier les sources et les puits de manière optimale.

9

https://fr.wikipedia.org/wiki/Triangulation_de_Delaunay
https://fr.wikipedia.org/wiki/Marche_de_Jarvis
https://fr.wikipedia.org/wiki/Triangulation_d%27un_polygone
https://fr.wikipedia.org/wiki/Triangulation_de_Delaunay#Une_d%C3%A9finition_visuelle_:_le_basculement


Nous avons essayé avec un autre maillage, en trois dimensions cette fois, que l’on appellera maillage
cubique. Ce maillage est relativement différent des autres car on voit bien que pour optimiser ses trajets le
blob reste sur la même stratégie qu’avant (à savoir un jeu de branche reliant tous les puits et sources deux
à deux de manière optimale). Cependant on observe des branches annexes qui mettent beaucoup plus de
temps à s’effacer.

Situation initiale Après 500 itérations Après 1000 itérations

6 Éxecution du code

Pour faire tourner les simulations, nous avons codé une interface graphique avec le module tkinter
de Python. Elle consiste en une liste de boutons correspondant à chaque paramètre de la simulation. La
recherche de documentation pour ce module nous ayant posé particulièrement problème.

Malheureusement cette interface ne fonctionne pas si le code est exécuté sur serveur, il faut donc
se contenter d’appeler les fonctions avec leur paramètres : la documentation étant fournie dans le fichier
.ipynb. Pour ouvrir l’interface il faut donc travailler avec le fichier .py en local.

7 Conclusion

À travers ce projet nous avons pu simuler informatiquement le comportement d’un blob en présence
de sources et de puits de nourriture et ainsi nous rendre compte que ce dernier choisissait stratégiquement les
branches du maillage à entretenir et celles à délaisser. À travers les nombreux maillages étudiés, nous avons
pu constater que le blob arrivait à reproduire ce comportement quelque soit le maillage initial. Cependant
lorsque les sources et/ou les puits changeaient de place à chaque pas de temps le blob développait des
embranchements en ne gardant actives que les routes ”utiles”. Les paramètres de l’expérience, τ et de γ,
n’influent que sur la vitesse de l’expérience et non pas sur le résultat final. Les résultats obtenus montrent
cependant que le blob est capable, par exemple, de trouver le moyen de transport optimal entre un nombre

10



donné de point de départ (source) et de point d’arrivée (puit). En matière d’optimisation on pourrait aussi
simuler un trafic ferroviaire en modifiant l’intensité des point d’arrivée en fonction de la population d’une
ville ce qui permettrait de savoir combien de trains il faudrait envoyer par heure dans certaines gares.
Évidemment le blob trouve son utilité dans les problèmes impliquant des réseaux avec des débits que ce
soit en hydrostatisque ou en électrocinétique dans des circuits fermés avec des sources de courants et des
”puits”/annihilateur de courant. En guise d’ouverture, il serait possible d’étendre le problème du blob à des
dimensions plus élevées ou de travailler avec des sources à l’extérieur du blob et de rajouter la possibilité au
blob de déplacer ses nœuds moyennant un coût en énergie.

11



Los Commandos

12


	Introduction
	Présentation du modèle
	Résolution mathématique AP = I
	Résolution informatique
	Observations et analyse des résultats
	Éxecution du code
	Conclusion

