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Introduction
Residual Learning is a concept born in 2015, in a context where new algortihmes try to develop the

concept of ”deep” networks. Indeed, the first algorithm, initiated by LeCun [1] in 1998, named LeNet is
greatly outdone by AlexNet [2] who wins ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
in 2012, then by VGG [3] and finally by GoogleNet [4] which wins this same contest in 2014 with a
network of 22 layers. In this period, it is highlighted [3, 4] that the deeper a network is, the more it is
performing.

One year later, Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun show in their article [5] that
the accuracy of deep networks can be further improved with the concept of Residual Learning. This one
pushes back, without increasing the complexity of the algorithms, the known limit of very deep learning
(i.e. above 20 layers) : the exploding and vanishing [6, 7] gradient which results in an attribution of 0
and ∞ values to the gradient during the backpropagation, blocking the improvement of the network.

In this report, we will first summarize the theoretical part, then we will approach the experimental
part where we will comment our results.

1 Theory
The origin of the problem comes from the following observation, using the CIFAR-10 data [8], it was

noticed that increasing the depth of the neural network did not increase its accuracy and could even
decrease it.

Figure 1.1 – Accuracy according to the number of epochs

For example, on this graph 1.1, we can see that going from 34 to 56 layers is not efficient, and the
goal of Residual Learning is to make this complexity increase profitable. To do this, the goal is to add
shortcuts in the following way :

Figure 1.2 – Shortcut

The ”shortcuts” are performed in the following way, after passing through a fixed number of layers and
activation functions, the input value is added to the output, this process does not add any computational
complexity, the number of parameters remains the same with option of zero-padding or increases by a few
parameters depending on the depth of the architecture with option projection which is therefore largely
negligible. The interest of Residual learning is that it acts as a kind of reset of the network depth and
allows to refresh it regularly, which avoids the problem of ”vanishing gradient” by allowing the signal to
bypass a weight system.
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In the context of the article we place a shortcut after two convolutions in two dimensions and a ReLU
activation function. The networks being rather large, twenty layers at least, this gives a rather large
number of shortcuts, a little less than half the number of layers.

The network described in the article is the ResNet34 defined in this way by 34 layers, hence its name.

Figure 1.3 – Architecture CIFAR-10

It is composed of several successive layers of convolutions of the same size which makes short cuts
easy, the inputs being of the same dimensions as the outputs. However, the convolutions go from size
64 to 512 by powers of two, which forces a modification of the input, not being at the right dimension.
To resize the inputs several choices are offered to us, either we proceed to a zero-padding to change the
dimensions of the input, or we proceed to a projection. The method that will be chosen is the first one
to increase the dimensions.

The model, in the article, is trained on the ImageNet database of 2012 with more than ten million
images with ten thousand possible labels and obtains conclusive results, the network with thirty four
layers with residual learning obtains better results than the one without residual learning but also than
the one with twenty layers whether with or without residual learning, as shown in this graph :
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Projet - Méthode de l’IA
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Figure 1.4 – Comparison with and without Residual Learning

To go to even deeper networks than thirty four layers, we proceed to a division of the layers before
the shortcuts, passing, for example, from two 3x3 convolution layers by two 1x1 convolution layers and
one 3x3 layer which allows to go from 34 to 50 layers. Other models have been created in the same way
to obtain networks with 101, 152 and even 1202 layers.

Figure 1.5 – Comparison of all created networks

Comparing their accuracy on this graph, we notice that the deeper the network is, the better its
performance up to a certain number of layers. Indeed, the 1202 layer network is less accurate, although
it has the same training error as the 152 layer network, this is due to overfitting and to the small data
set.

2 Implementation

2.1 General
Our implementation follows the one given in the initial article. We use the batch normalization (BN)

after each convolution and before each ReLU activation [9] as indicated in [10]. The drop out [11] will not
be used. The network ends with an average pooling. Of course, we train the model only after initializing
the weights (here with the default method of PyTorch, i.e. each weight follows a uniform law). Contrary to
the paper and in order to decrease the computational resources, we use the Adam optimization algorithm
[12] with its recommended parameters already implemented in PyTorch as well as a mini batch of size
32, a number of epochs of 10 and the images are neither cropped nor resized.

2.2 Case Study
As we have no technical possibility to use the ImageNet dataset [13] (containing 1.28 million training

images), we will use the second dataset studied in the article : CIFAR-10 [8] consisting of 50 000 training
images and 10 000 test images divided into 10 features. The architecture of our network is inspired
by the figure 1 where the arrows represent in dotted line the shortcuts rectifying the dimension of the
input and in solid line no change is necessary. The first layer of our network is a 3x3 convolution taking
as input the three RGB channels of the images and as output 16 channels. Then we have n identical
blocks each composed of two 3x3 convolutions, with an input equal to the output, then a shorcut. We
repeat this block two other times for each channel, here respectively 16, 32, 64. The convolution layers
of dimension transition will have as indicated in the article a stride of 2. Finally the network ends with
a linear classification. We will choose n = {3, 5, 7, 9} giving then networks of {20, 32, 44, 56} layers. The
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shortcut can be done in two ways, either option (A) by adding a null padding to artificially increase the
size, in this case the article advises to put a padding of 4 around each value, or option (B) by making
a projection using a 1x1 convolution. In the rest of this report, we will abuse the language to speak of
the accuracy and the loss of a model instead of their respective empirical mean on 5 samples of identical
models as calculated in practice.

2.3 Verification of the implementation
This part is just to check if our algorithm is well implemented.

2.3.1 Comparison with the models models.resnet() from PyTorch

Figure 2.6 – Performance of TorchResNet and ResNet (with option (A))

Surprisingly, the implementation of the ResNet with PyTorch seems from the figure 2.6 to be much
less efficient than the one we made. Therefore, we cannot directly conclude that our implementation of
the ResNet is correct. However, the excellent performance of our algorithms is encouraging in terms of
the positive direction our research has taken, namely the proportional improvement in performance as a
function of network depth.

2.3.2 Verification of performance improvement with increasing depth

Because of the ”vanishing and exploding gradients”, if our network is not well implemented, the
performance should decrease proportionally to the depth. Let’s check graphically if this is the case.

Figure 2.7 – Performance of ResNet (with option (A))

The figure 2.7 shows that the deeper our ResNet network is the better its performances are. The
difference in accuracy and loss between our 20-layer and 56-layer networks are respectively 1.3% and
2.2% after 10 epochs. This reassures us on the implementation of our network which seems to work.
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2.4 Comparison of options (A) and (B)

Figure 2.8 – Performance of Option (A) and (B)

It can be seen, either through the curves or the Sum of Squares Residuals (SSR) presented on the
figure 2.8, that the two shortcut options are very similar (especially after some epochs). Moreover, option
(A) offers slightly better overall performance than option (B). Therefore, like the original article, we will
default to option (A).

2.5 Comparison with models without Residual Learning
The goal of this section is to confirm that the ResNet algorithm does indeed provide additional

information to a classical Convolution Neural Network (CNN), i.e. without the shortcut. It should be
noted that we have limited our experiments to 10 epochs for computational reasons, as it is generally
from this point onwards that the performances of both networks decrease.

Figure 2.9 – Performance of ResNet and CNN

We can see with the figure 2.9 that ResNet performs much better than the CNN, especially when the
depth is large. According to our results, ResNet improves on average the accuracy and loss of the CNN
by about 28% and 43% after 10 epochs.
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Conclusion
Through this report, we have seen the power of residual learning, which allows to increase the accuracy

of a neural network without increasing its complexity, which explains why it is one of the major concepts
of deep learning nowadays.

We have succeeded in reproducing, at our scale, conclusive results about the impact that residual
learning can have on a neural network. It would have been interesting to evaluate the models on a larger
number of epochs, but given our limited computing power and time, we preferred to compare the different
models.
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