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1 Introduction

Gravitational waves are ripples in space-time, generated by cataclysmic cosmic events such as the collision of black

holes or the merging of neutron stars. They propagate through the universe at the speed of light. Gravitational waves

make it possible to observe events in space by means other than electromagnetic waves.

Gravitational waves are a consequence of Einstein’s 1915 theory of general relativity. According to this theory,

massive objects distort space-time, and when these objects move at accelerated speeds, they create disturbances that

propagate as waves. Einstein himself believed that these waves would be too weak to ever be detected [4].

The Laser Interferometer Gravitational-Wave Observatory (LIGO) is the first gravitational-wave observatory to

be built: one in Hanford, denoted H1, Washington, USA, and one in Livingston, denoted L1, Louisiana. They were

inaugurated in 2002, after more than 30 years of planning. We will have to wait until September 14, 2015 at 9 h 50

min 45 s UTC to observe the first black hole merger, namely, GW150914, at 450 MegaParsec (1 MegaParsec = 1Mpc =

3.262×106 light-years), i.e. over a billion light-years away, which will have been made on both detectors. The European

Virgo detector, located in Cascina, Italy, and inaugurated in 2003, was unable to detect GW150914.

This discovery earned Rainer Weiss, Kip Thorne and Barry Barish a Nobel Prize in 2017 for their key role in the

design, construction and operation of the LIGO project. Takaaki Kajita, the 2015 Nobel laureate in Physics for his work

on neutrinos, is the principal investigator of the Kamioka Gravitational Wave Detector (KAGRA), a gravitational wave

observatory established in Japan. Initially approved as the LCGT project in 2010, it was renamed KAGRA in 2012. The

observatory itself was established in 2016, and the KAGRA experiment was finalized in 2019. It aims to introduce new

cryogenic cooling technology compared to other observatories and made its first observation in 2020.

As the amplitudes of gravitational waves are very low compared to ambient noise, it is necessary to reduce the latter

as much as possible. One method aiming to reduce seismic noise is to suspend the detector components on complex

machinery, which helps isolate them from ground vibrations. However, this approach comes with a trade-off: while it

improves isolation, it also introduces additional mechanical resonances that can affect the sensitivity of the detector at

specific frequencies. This introduces a new type of noise, the suspension noise.

The latter is characterized by peaks of high intensity at a given resonance frequency, with a finite width determined

by the damping characteristics, typical of a damped oscillator. To solve this problem, one of the solutions being

explored is machine learning signal processing, with the aim of eliminating the peak in real time, without altering the

information contained in the signal.
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2 Gravitational Waves Physics

2.1 Gravitational theories

Gravity is one of the four elementary interactions, alongside the strong nuclear interaction, the electromagnetic

interaction and the weak interaction. In 1687, Newton’s law of universal gravitation was published, expressing the

gravitational force in the following manner:

F⃗ =−G
m1m2

∥⃗r∥3 r⃗ (2.1)

Where:

• F⃗ is the vector gravitational force

• G is the gravitational constant

• m1 and m2 are the masses of the two objects

• r⃗ is the vector between the two objects

Newton’s law of gravitation, although extremely accurate for objects of moderate size and low velocities (v ≪ c), has

its limits under extreme conditions. It doesn’t take relativistic effects into account, making it inapplicable to very massive

objects, such as black holes, or in situations where velocities approach that of light. During Einstein’s annus mirabilis,

the article on general relativity proposed a revolutionary description of gravitation. Unlike Newton’s gravitation, it

is based on the idea that gravitation is not a force but the result of the curvature of space-time, a four-dimensional

structure encompassing space and time. This curvature is produced by the presence of matter and energy. Key ideas in

general relativity include:

• Equivalence Principle: It states that locally (in small enough regions of spacetime), the effects of gravity are

indistinguishable from those of acceleration. An object in free fall does not feel gravity, just like someone in a

spaceship accelerating in space would feel like they are under the influence of gravity.

• Spacetime Curvature: Matter and energy determine the curvature of spacetime, which is described by the metric

tensor gµν. The curvature of spacetime affects how matter and light move through it.

Einstein’s field equations describe this relationship between matter/energy and the curvature of spacetime. They

are given by the following equation:

Gµν+Λgµν = 8πG

c4 Tµν (2.2)

• Gµν is called the Einstein tensor, which represents the curvature of spacetime.

• Λ : is the cosmological constant. It represents a cosmic repulsion force acting on large scales. It is neglected in

our context as it relates on dark matters/energy.

• gµν : The metric tensor, which describes the geometric structure of spacetime. It tells how distances are measured

and how spacetime is curved.

• c is the speed of light in vacuum

• Tµν : The stress-energy tensor (also known as energy-momentum tensor), which describes the distribution of

matter, energy, momentum, and stress in spacetime. It serves to describe the dynamics of spacetime curvature.

In presence of heavy objects (Black Hole, Neutron Star), the tensor becomes significant.

According to Einstein’s theory of general relativity, the line element of curved space time geometry, denoted d s, can

be described as infinitesimal displacement vector and defined as:

d s2 = gµνd xµd xν (2.3)

9
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The metric tensor of curved spacetime can be expressed like this:

gµν = ηµν+hµν (2.4)

With ηµν corresponding to the Minkowski metric and d x the space metric. In Minkowski space, in 4-dimensional

spacetime, it is often written as:

ηµν =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , d xµ = d xν =


d t

d x

d y

d z

 (2.5)

Here, we consider hµν as a deformation of the spacetime.

For simplification purposes, Einstein introduces an algebraic short-hand notation also known as Einstein Notation.

It states that when an index is repeated in both covariant (lower) and contravariant (upper) position in a product of two

terms, it implies a summation over the N index (in spacetime N = 3 with 0 representing time and 1, 2 and 3 spatial

coordinates).

AµBµ =
N∑
µ=0

AµBµ (2.6)

Here are typical notations and tensor operations:

• Index position switch (using metric tensor for instance) Vµ = gµνV ν

• In standard notation, the contraction of T µν with gµν can be written out explicitly:
∑3
µ=0

∑3
ν=0 T µνgµν. In Einstein

notation, it becomes T µνgµν.

• In the specific case for trace contraction: T µ
µ =∑3

µ=0 T µ
µ

For an observation from Earth, we consider ourselves far from source and in a vacuum region. That leads to the

second term and the third term of the equation close to zero and therefore the Einstein Field Equation (2.2) becomes

simply:

Gµν = 0 (2.7)

The Einstein tensor can be written as follows: Gµν = Rµν− 1
2 Rgµν with Rµν the Ricci Tensor, that measures the way

in which the curvature of space-time.

The wave equation for the perturbation approximation of the metric tensor is given by :

□hµν = 0 where □= ∂2

∂t 2 −∇2 (2.8)

The solutions of this equation in vacuum are plane waves of the form:

hµν(t , x⃗) = Aµνe i (kσxσ) (2.9)

2.2 Definition of Gravitational Waves

Let us consider a Gravitational wave traveling in the z-direction,

kσ = (−ω,0,0,k).

Where:

10
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• ω is the angular frequency or pulsation of the wave.

• k is called the wave vector, it’s the wave’s spatial angular frequency.

As in the case of electromagnetism, the wave propagation solution can be decomposed into two independent

components representing two polarization modes, h+ and h× :

hµν(t , x⃗) =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

exp i (−ωt +kz) (2.10)

This leads to two polarizations, corresponding to two modes of spatial deformation of space-time, often referred

to as plus mode + and cross modes ×. These deformations describe the oscillation of the gµν tensor, which causes

successive squeezing and stretching of spacetime. In the orthonormal reference frame of space-time (ê0, ê1, ê2, ê3), we

can describe the perturbation vectors of the two different modes.

e+i j = ê1 ⊗ ê1 − ê2 ⊗ ê2, (2.11)

e×i j = ê1 ⊗ ê2 + ê2 ⊗ ê1. (2.12)

In the following reference frame defined by equations (2.11) and (2.12), deformations of a gravitational z-direction

was perpendicular to the sheet/screen can be seen in figure 2.1. The pattern from h+ to w t = π
2 , when the oscillatory

argument of the wave reaches 90 degrees, corresponds to a maximum squeezing along the y axis and a stretching along

the x axis, and similarly, at w t = 3π
2 corresponds to stretching along the y axis and a squeezing along the x axis.

Figure 2.1: Illustration of the effect of the plus and cross propagation of GWs [12]

Gravitational waves can be classified into 4 types, model and unmodeled as well as transient and continuous:

• Continuous Gravitational Waves: These waves originate from continuous sources, such as asymmetric neutron

stars spinning on themselves. Unlike inspiral waves, they have regular frequencies and don’t vary much over

time.

• Stochastic Gravitational Waves: They are the relic gravitational waves from the early evolution of the universe.

Much like the Cosmic Micro-wave Background, which is likely to be the leftover light from the Big Bang.

• Burst Gravitational Waves: These waves result from sudden, violent events such as supernovas, mergers of

compact objects or mountain ruptures on neutron stars. They are transient, producing a brief but intense signal.

• Compact Binary Coalescences Gravitational Waves: These waves are emitted by Compact Binary Coalescences

(CBC). CBC refer to the merging events of two compact astronomical objects, such as black holes, neutron stars,
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or a black hole and a neutron star. These objects are referred to as compact due to their dense nature. In those

merging events, there are three different successive phases : inspiral, merger and ringdown.

Figure 2.2: Visualisation of a Binary Merger

The gravitational waves that interest us and that we know how to model are those that correspond to massive binary

systems, e.g. black hole and neutron star mergers. There are three phases, as shown in the figure 2.2:

• Inspiral phase: when the two black holes orbit each other and come closer together due to the gravitational waves

they emit.

• The merger phase: when the two black holes merge into a single black hole. This phase corresponds to an

amplitude peak.

• The ringdown phase: when the resulting black hole stabilizes, emitting a few more oscillations before reaching a

stable final state.

12
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3 Gravitational Waves Observatory: LIGO-VIRGO-KAGRA

LIGO, Virgo and KAGRA (LVK) form the advanced network of gravitational wave detectors. LIGO is managed by the

LIGO Laboratory, a consortium of the California Institute of Technology (Caltech) and the Massachusetts Institute of

Technology (MIT)? Virgo is operated by the European Gravitational-Wave Observatory and KAGRA by The Institute for

Cosmic Ray Research (ICRR), the High Energy Accelerator Research Organization (KEK) and National Astronomical

Observatory of Japan (NAOJ). On the map (Fig. 3.1), there is also the detector GEO600 in Hannover in Germany,

which is a stepping stone in research. The technologies are being developed and tested as part of the GEO project

for implementation in other GW observatories. They are also used simultaneously with these observatories. They

also make simultaneous runs with those observatories. Together, they detect, locate and characterize the coalescence

of compact binary mergers, continuous gravitational waves and burst gravitational waves. This manuscript will be

focusing mainly in the perspective of KAGRA interferometer.

Figure 3.1: Detector localizations (world map) and the observing plan (bottom-right)

The LVK collaboration brings together ground-based gravitational wave telescopes. Their location and placement

allow detectors to complement each other and cover a wider area of the skymap. A larger number of detectors increases

the quality of the sky map, and better sensitivity by reducing noise, ultimately enabling an event to be measured with

a standard telescope using the NASA General Coordinates Network reporting system. In addition, other projects are

being planed such as the Laser Interferometer Space Antenna (LISA), which is a detector in space that would allow

a better sensitivity and a better frequency range, or the Einstein Telescope, the next generation gravitational wave

detector.

At the bottom left of the figure 3.1 is the observing plan, which represents the different observing runs of the

detectors. Oi corresponds to the i-th observation run, of which the 4th is still in progress with O4b until early 2025. In

this timeline, distances given in Mpc (1 Megaparsec = 3.262×106 light-years) refer to the binary neutron star range,

indicating the detection capabilities for such events. Binary black hole (BBH) mergers, being louder, can typically be

detected at much greater distances.
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3.1 Michelson Interferometer Principle

Laser interference is a key phenomenon in wave physics, resulting from the superposition of two or more waves. When

coherent photons meet, they can interact constructively or destructively, depending on their relative phase, creating

patterns of reinforcement or cancellation.

Figure 3.2: Young’s Experience

Figure 3.3: Interference pattern

The Young’s slit experiment, a coherent light source, usually a lamp or laser beam, is directed onto an opaque barrier

with two thin parallel slits. The light passing through these slits (Fig 3.2) is then projected onto a screen (Fig 3.3) placed

behind the barrier.

The two waves emanating from the slits are superimposed and interfere with each other. When the crests of the

wave from one slit coincide with the crests of the wave from the other slit, constructive interference occurs, forming

bright areas on the screen. Conversely, when the peaks of one wave coincide with the troughs of the other, destructive

interference occurs, resulting in dark areas.

Without going into the details of the calculations, we can describe the characteristics of the interference pattern.

Depending on where you place an intensity detector, you can measure the phase shift between the two signals, which is

where the idea for the Michelson interferometer came from:

A Michelson interferometer consists of at least two mirrors, M1 and M2, and a beam splitter, usually a 50% reflective

mirror M . A coherent light source, like a laser, S emits a beam which reaches the beam splitter. Since M is partially

reflective, some of the light is transmitted to point B, while some is reflected back to point A. The two beams reflect off

the M1 and M2 mirrors respectively, then recombine to produce an interference pattern on the E detector.

Since gravitational waves are a perturbation of space-time, the passage of one of them through the detectors

will introduce a change in the length between the two arms of the detector. Therefore, a gravitationnal wave going

inside the detector will modify the interference pattern enabling ∆L to be calculated. It’s important to note that the

length of the arms L, will also influence the sensitivity of the device, the longer the arms, the better the sensibility will be.

3.2 KAGRA Experiment

The KAGRA collaboration is an international initiative involving some 400 scientists and engineers from over 100

institutions in 15 countries. It was founded in 2010 under the leadership of the Institute for Cosmic Ray Research at

14
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Figure 3.4: Michelson interferometer

the University of Tokyo. KAGRA is the first underground gravitational wave detector, located in Kamioka, Japan, and

uses cryogenic technology to cool its mirrors to 20 Kelvins, reducing interference from thermal noise. Its arms are 3

kilometers, which is the same as VIRGO and less than LIGO (4 kilometers) in order to improve the sensitivity of the

detector.

Figure 3.5: Kagra Location

The reason why KAGRA is located underground in the mountains is to reduce environmental noise, such as seismic

noise, and improve the accuracy of its measurements. The configuration of KAGRA is described in the article Perfor-

mance of the KAGRA detector during the first joint observation with GEO 600 (O3GK) [2].

15
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3.2.1 Hardware

The KAGRA interferometer works on the same principle as a Michelson interferometer, with additional modifications

to better performances, and considering the large device size as compared to the human size Michelson toy model

introduced in section 3.1 (view Fig 3.6). PRM, PR2, et PR3, SR2 and SR3 components correspond to the power-recycling

cavity length that improve detection and sensitivity. The OMC cleans the spatial mode and rejects unwanted signal.

Figure 3.6: Kagra Interferometer

3.2.2 Focus: Seismic Isolation System

In addition to KAGRA’s underground location, complex engineering is in place to reduce systemic vibration. It uses

a multi-stage suspension system, in particular for the sapphire mirror ITM[XY] and ETM[XY] (Type-A suspension),

to suspend the mirrors. Each mirror is suspended by a series of cables and secondary masses that act as dampers to

isolate the mirror from earth vibrations. This multi-stage design helps to reduce vibrations at each level.

Figure 3.7: Suspension in KAGRA’s Michelson Interferometer

Figure 3.8: Suspensions used at KAGRA

As shown in figure 3.7, there are several types of suspension and the ones we are interested in are the longest, and

therefore the most likely to generate noise, i.e. type A suspension (referring to figure 3.8).

16
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3.2.3 Strain measurement

The key quantity measured is the strain, represented as ∆L(t )
L , which describes the relative displacement between the

two detector arms. Gravitational wave strain h(t ) comes from differential arm motion (DARM) with ∆L(t ) = 1
2 L×h(t )

where L the arm length. By comparing the initial signal emitted by S with that received by E , we can determine the

quantity ∆L = Lx−Ly

2 , which captures the change in length between the two arms. The strain signal h(t ) of a GW signal

is given, taking into account the antenna pattern functions F+ and F× as:

h(t ) = F+(θ,φ,ψ, t )h+(t )+F×(θ,φ,ψ, t )h×(t ), (3.1)

where θ is the right ascension, φ is the declination, and ψ is the polarization angle, represented in figure 3.9. These

strain measurements are taken successively, with each separated by a time interval ∆t = 1
fs

, where fs is the detector’s

sampling frequency.

Figure 3.9: Relative orientation of the source and sky frames. θ, φ and ψ express the transition from one referential to another

The phase difference is induced time of flight between interferometers and the interferometer orientation.

Figure 3.10: Antenna pattern of KAGRA

To describe the Michelson interferometer’s sensitivity to the plus and cross polarizations of gravitational waves

originating from the direction (θ,φ,ψ), we use antenna patterns. It shows the sensitivity of the detector as a function of

17
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the position of the event, and in our case the antenna pattern is defined by the two functions F+ and F× representing

the sensitivity according to the plus and cross modes.

In the referential where the KAGRA detector is placed at z = 0 and its arms are along respectively x and y we get

the figure 3.10. This figure show the sensitivity of KAGRA according to the angle of incidence of the gravitational wave.

It can be seen that some areas are more sensitive than others, but that some areas are blind spots, such as the x = y

bisector, which can be explained by the fact that the gravitational wave will disturb both arms in the same way. This

justifies the importance of having several detectors to cover all these shadow zones.

Figure 3.11 shows a signal from the O3GK dataset, corresponding to the difference between the length of each arms

of the KAGRA detector. The data currently recorded by KAGRA comes from the O4 catalog and is still private to this day.

Figure 3.11: Example of a strain signal collected by Hanford with a gravitational wave incidence.

Since the gravitational wave has a lower amplitude, it is difficult to detect with a signal in this form. A shift to the

frequency domain reveals the frequencies specific to the gravitational wave.

The signal sampling frequency is 16384 Hz (also denoted 16kHz) and the order of magnitude of the strain is 10−14

in this very specific context of Observation #3 GEO-KAGRA (O3GK) run for KAGRA. The amplitude depends on the

sensitivity of the detector, which is linked to the PSD.

A way to determine stationary noise is by computing its power spectral density (PSD). This is a mathematical

representation of the power spectrum as a function of its frequency, and its formal definition is given by the Fourier

transform of the frequency response function of a signal or random stationary process:

18
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Sx ( f ) = lim
T→∞

1

T

∣∣∣∣∫ T /2

−T /2
x(t )e−i 2π f t d t

∣∣∣∣2

(3.2)

In our case, we use the Welch approximation, which decomposes the signal into several overlapping windows and

then performs a Fourier transform (FFT) on each window, taking the square of the absolute value and proceeding to

the arithmetic mean. The figure 3.12 show this by taking an overlap of 50%. The choice of the number of windows

is a crucial parameter in the PSD estimation: the more windows, the more noise will be averaged and the lower the

frequency resolution.

Figure 3.12: PSD Calculation using Welch’s method

The advantage of the PSD is that it eliminates transient noise and allows to visualize the energy distribution of the

signal with respect to frequency. It is more often convenient to display the logarithm of the PSD defined as:

Sx,dB( f ) = 10log

(
Sx ( f )

I0

)
(3.3)

With I0 defined as an arbitrary reference, often the noise reference.

Amplitude spectral density (ASD) is commonly used in signal processing and is defined as the square root of the

PSD:

ASD =
√

Sx ( f ) (3.4)

ASD can be easier to interpret than PSD, as it directly expresses the amplitude of oscillations or signals at different

frequencies, rather than power (which is quadratic).

Figure 3.13: KAGRA’s ASD
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We can see three different regions in the ASD of KAGRA (Fig 3.13):

• The low-frequency region (before 100 Hz): Noise is relatively high at low frequencies, but decreases as frequencies

increase.

• This middle-frequency region (between 100 Hz and 1000 Hz) which is flat in terms of spectrum, is of major

interest for scientific analysis. However, peaks known as “Violin modes” can be observed in this portion, which

are characteristic of the suspension’s own modes of vibration. These peaks are particularly intense and can

interfere with measurements. Bandpass filters are often applied to focus on the frequencies of interest.

• The high-frequency (above 1000 Hz): the PSD shows a marked increase. This rise is generally attributed to

quantum effects.

The Signal-to-Noise Ratio (SNR) of a detector’s datasteam is a statistic used to do match filtering. In this definition of

SNR, we are looking for a model h. We are searching in the frequency domain, so we define h̃ as the Fourier Transform

of h. Because we want to compare it with an other signal, we denote t i ldeh∗ as the complex conjugate of the Fourier

transform.

The following method is defined in the book [9]. We assume that the model we’re looking for (h) is embedded in the

noise (n) of the received signal (s): s(t ) = h(t )+n(t ). From the, PSD of the noise can express by the following formuula:

〈ñ( f )ñ∗( f ′)〉 ≡ δ( f − f ′)Sn( f )

(h|s) =
∫ ∞

−∞
h̃∗( f )s̃( f )

Sn( f )
d f (3.5)

The inner product described in equation 3.5 is then normalize by the inner product of the model h with himself.

(h|h) is used as normalization as this is optimal case where there is no noise (s(t ) = h(t )). SNR can be higher than 1 if h

is amplified (Amplitude measured in s is larger than the one in h). The final SNR is given by (h|s)
(h|h) .

This method is particularly effective for extracting weak signals embedded in noise. The scalar product weighs

each frequency contribution of the signal against the noise Sn( f ), allowing frequencies where the noise is lower to

contribute more to the SNR, maximizing the chances of detection, even in the presence of strong disturbances.

One of the major advantages of this method is that it exploits all available information on the spectral shape of the

noise. By taking into account the PSD of the noise, this approach allows greater weight to be given to frequency bands

where the disturbance signal is more significant and the noise is less.

3.2.4 Thermal suspension noise

The noise we’re interested in is in the navy blue bands in the figure 3.7, corresponding to the suspension thermal noise.

There are 3 blue band, corresponding to the mode of the violin noise and therefore, the first harmonic is the higher. The

navy blue band is not only one peak, but a group of thirty peaks since the architecture of KAGRA is more complex that

just one string. The noise is modeled as a damped harmonic oscillator. Although the detector has an relatively low

ambient temperature, it is sufficient to generate thermal noise and makes the mirrors oscillate again. This model allows

us to understand that this noise is not constant over time, and that it is therefore not possible to simply subtract the

signal amplitude at this point.

The appropriate term for this noise is suspension thermal noise, because it comes from Brownian motion of

particule hitting sapphire mirrors and others. These peaks are also called violin noise since they are from vibrations of

strings. The aim is to suppress these peaks without compromising the information present in this frequency range,

which prevents us from simply applying a notch filter.
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Figure 3.14: Focus on the KAGRA PSD area of interest

Note that the peaks have different amplitudes and widths (Fig 3.14), and can sometimes be located very close to

each other. The aim is therefore to remove each of these peaks while creating the minimum possible loss of information

in relation to the original signal.

3.3 First discoveries

Since the first observing run (O1), the gravitational wave community has progressively improved its sensitivity through

successive observation runs, including O2 and O3. Each run has led to the detection of a growing number of gravita-

tional wave events, ranging from black hole mergers to neutron star collisions.

A good way of visualizing gravitational waves incidence, and in general transient events, is the Q-transform. It

is based on a time-frequency decomposition that uses windows whose width in the time domain and width in the

frequency domain are related to each other in such a way that the greater the width of the time window, the smaller the

width of the window in the frequency domain, and vice versa.

The q-transform optimizes the zones of interest to be more precise on certain frequencies with a non linear binning,

while saving time by lowering the definition of uninteresting frequency zones [11]. We will now present two pioneering

events in the discovery of gravitational waves.

3.3.1 Event GW150914

The first gravitational waves were detected on September 14, 2015 at 9:50:45 UTC during the O1 run and corresponded

to the merger of two black holes, each around 30 times heavier, than our Sun at around 410 megaparsec, or more than a

billion light-years away.

The figure 3.15 is composed of several sub-figures from top to bottom taken from the Hanford (on the left) and

Livingston (on the right) LIGO detector. At the very top is a smaller replica of the figure 2.2. Using the signal, and the

Q-transform graph, we can clearly see the three phase described in section 2.2, namely, the inspiral phase, where the

signal gains in amplitude and the frequency is relatively low, the merger phase where the signal reaches its amplitude

peak and has a very high frequency (we can notice a chirp on the Q-transforms on the last row of figure 3.15) and finally

the ringdown phase, where the signal amplitude decreases and then disappears.

Despite being separated by several kilometers and after suppressing any potential correlated noise, both detectors

measured a signal whose distribution matched the expected pattern of a gravitational wave generated by the merger

of two black holes with masses M1 = 36 (M⊙ and M2 = 29 with (M⊙ representing the mass of the sun) [1]. This signal

represents the first direct detection of a black hole binary merger. This discovery provided also the proof of the existence
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Figure 3.15: Signals picked up by LIGO detectors during event GW150914

of gravitational waves, marking in 2015 the beginning of a new era in astrophysics.

3.3.2 Event GW170817

Another important detection is GW170817, the first merger of a couple of neutron star on the 17th August 2017 at 12:41

UTC.

Unlike GW150914, which was detected solely by gravitational observatories, GW170817 was first observed by the

Fermi GRB (Gamma-Ray Burst) telescope and the INTEGRAL telescope (cf fig 3.16), before being confirmed by LIGO

and VIRGO. This type of event is particularly interesting because it represents a multi-messenger detection, combining

the observation of gravitational waves with electromagnetic signals, providing a more complete view of astrophysical

phenomena.

Although GW170817 was less intense than GW150914 in terms of gravitational wave amplitude, it was distinguished

by its much longer duration. This event corresponds to the merger of two extremely dense neutron stars, in contrast to

the black hole merger observed in GW150914. The coalescence of the neutron stars not only generated gravitational

waves, but also produced a kilonova, an explosion ejecting materials rich in heavy elements such as gold and platinum.

This process has led to a better understanding of the origin of these elements in the Universe, reinforcing the hypothesis

that neutron star mergers are a major source of the creation of these elements in the cosmos.

By cross-referencing observations from different detectors, such as LIGO and Virgo, gravitational events can be

pinpointed, as shown in figure 3.17. Each interferometer measures differences in wave arrival times, narrowing down

the likely region on the sky. Thanks to triangulation, the area has been greatly reduced. The optical telescopes, pointed

at this region, then detected the electromagnetic counterpart, enabling a very precise localization of the source, illus-

trating the effectiveness of the multi-messenger approach.
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Figure 3.16: Detection of the GW170817 event by several detectors

Figure 3.17: Sky map of the GW170817 event

GW170817 also marks the start of a new multi-messenger era, in which gravitational waves are detected in parallel

with other types of signal, such as gamma-ray bursts. This ability to observe the same astrophysical events with different

types of messenger opens the way to unprecedented discoveries in the physics of neutron stars and gamma-ray bursts.

These multi-messenger observations make it possible to constrain more astrophysical parameters, such as the equation

of state of neutron stars, and refine our understanding of violent phenomena occurring in the Universe.

Today, the LVK (LIGO-Virgo-KAGRA) collaboration detects several gravitational waves a week, with events ranging

from stellar black hole mergers to neutron star coalescences. However, only two neutron star pair mergers have been

detected since 2015, as they are lighter than black holes and therefore more difficult to detect.
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4 Data Processing by Machine Learning

4.1 Architecture

SciNet is a model released in 2020 in the article SCINet: Time Series Modeling and Forecasting with Sample Convolution

and Interaction [8]. SCINet stands out for its ability to capture temporal dependencies at different scales. By breaking

down the data into smaller segments, the model is able to analyze short- and long-term relationships in greater detail.

This method enables the model to better identify complex patterns in time series, while taking into account interactions

between different data in a flexible way.

Figure 4.1: Scinet Model

This makes it more effective than conventional techniques such as ARIMA models or recurrent neural networks

(RNN), offering more reliable forecasts, particularly in situations where several variables evolve together over long

periods.

In our case, we want to use SCINet to try and predict the signal after it has passed through the interferometer. The

aim is to try to recreate the signal without the various noise violin peaks. SCINet’s architecture is shown in figure 4.1. It

is divided into three parts:

4.1.1 SCI-Block (a)

The first part, on the left, describes an SCI-Block, a processing block in the SCINet architecture. The input, denoted F ,

is first divided into two sub-parts, Fodd and Feven , representing odd and even elements respectively.

Distinct convolution kernels, φ and ψ, are applied to Feven and Fodd respectively to extract unique features. To

address potential information loss caused by downsampling, a new interactive learning approach is introduced. It

enables the exchange of information between the two sub-sequences by having them learn affine transformation

parameters from one another.

First, the sequences Feven and Fodd are projected into hidden states using two distinct convolutions, φ and ψ.

These projections then interact via a Hadamard product to perform reciprocal subsequence scaling:

F s
odd = Fodd ⊙exp(φ(Feven)), F s

even = Feven ⊙exp(ψ(Fodd )).

This can be interpreted as applying scaling transformations to Feven and Fodd , with the scaling factors being learned

from each other through neural network modules.

Secondly, the scaled features, F s
odd and F s

even , are projected into additional hidden states using two additional

convolutions, ρ and η. These new features are then added to or subtracted from the scaled sequences:
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F ′
odd = F s

odd ±ρ(F s
even), F ′

even = F s
even ±η(F s

odd ).

The different convolution kernels φ, ψ, ρ and η correspond to a set hyper-parameters of the model.

This approach improves information extraction by limiting losses due to downsampling. Downsampled sequences

exchange transformations, which reinforces interactions between data and enables better capture of important

dependencies, guaranteeing richer and more accurate interpretation of information.

4.1.2 SCINet (b)

In the SCINet structure, several SCI-Blocks are organized hierarchically to form a tree-structured framework. There

are 2l SCI-Blocks at level l , where l = 1, . . . ,L represents the level index, and L is the total number of levels. Within

the k-th SCINet, the input time series X (for k = 1) or feature vector X̂k−1 = x̂1
k−1, . . . , x̂τk−1} (for k > 1) is progressively

subsampled and processed by SCI-Blocks across different levels. This enables features to be extracted at different

temporal resolutions.

After traversing L levels of SCI-Blocks, the elements of all sub-features are rearranged by reversing the odd-even

separation operation and concatenated into a new sequence. This sequence is added to the original time series via a

residual connection to generate a new sequence with improved predictive capability. Finally, a simple fully-connected

network is used to decode this new representation into X̂k = {x̂1
k , . . . , x̂τk }.

4.1.3 Stacked SCINet (c)

In a Stacked SCINet, K layers of SCINets can be superimposed to further improve forecast accuracy, provided there are

sufficient training samples, although this leads to increased model complexity.

To facilitate learning of intermediate temporal characteristics, intermediate supervision is applied using actual

values on the output of each SCINet. The output of the kth intermediate SCINet, X̂k , of length τ, is concatenated with

part of the input X t−(T−τ)+1:t to recover the original length of the input, then used as the input of the next SCINet. This

process continues until the last SCINet, whose output X̂K is the final prediction.

4.2 Strain dataset generation and conditioning

The aim is to generate various time signals containing a violin peak at a given frequency. We also want to have control

over the amplitude and width of the peak, so as to be able to train the SCINet neural network on a dataset whose

components we have full control over. To do this, we’re going to build on the method implemented in the article Data

conditioning for gravitational wave detectors: A Kalman filter for regressing suspension violin modes [5].

The dataset is made up of the model’s input data and the output data the model tries to approximate. The latter is

called ground truth.

A violin peak is modeled as a damped harmonic oscillator, whose u coordinate represents the amplitude of a violin

peak present in the detector output. The u coordinate obeys the following differential equation:

ü + ω0

Q
u̇ +ω2

0u = F, (4.1)

where:

• Q is the quality factor of the oscillator

• ω0 is the proper frequency of the oscillator

• F is the (stochastic) driving force.
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By noting omeg ac the peak pulsation, we can introduce the quantity ψ = u exp(−iωc t)., ruled by the following

differential equation

ψ̇+
(
ω0

Q
+2iωc

)
ψ+

(
ω2

0 −ω2
c + i

ωcω0

Q

)
ψ= F exp(−iωc t ). (4.2)

or, in the Laplace domain,

(s −p+)(s −p−)ψ̃(s) = F̃ (s + iωc ). (4.3)

with:

g̃ (s) =
∫ ∞

0
exp(−st )g (t )d t (4.4)

p± =−ω0

2Q
− iωc ± iω0

√
1− 1

4Q2 (4.5)

The two poles p± in the Laplace transform solution correspond to the positive and negative frequency resonances

of the oscillator. By chosing ωc close to ω0, we can place ourselves in the s case close to p+ and push p− to infinity,

which gives us a single peak.

(s −p+)ψ̃(s) = F̃ (s + iωc )

s −p−
(4.6)

for |s|≪ |p−| it becomes:

(s −p+)ψ̃(s) =−p−1
− F̃ (s + iωc ) (4.7)

This allows us to simulate a single peak instead of two.

To switch from an analog to a digital filter, we use the bilinear transform defined as follows (with T = 1
fs

, the inverse

of the sampling frequency) :

Hd (z) = Ha(s)
∣∣∣

s= 2
T

z−1
z+1

= Ha

(
2

T

z −1

z +1

)
(4.8)

For the dumped oscillator, this gives:

Hd (z) = Ha

(
1− z−1

1+ z−1

)
(4.9)

=
[

4

T 2

z−2 −2z−1 +1

(1+ z)−2 + 2ω0

TQ

1− z−1

1+ z−1 +ω2
0

]
(4.10)

= T 2Qz−2 +2T 2Qz−1 +T 2Q

z−2[4Q −2Tω0 +T 2Qω2
0]+ z−1[−8Q +2T 2Qω2

0]+ [4Q +2Tω0T 2Qw2
0 ]

(4.11)

=

2∑
j=0

b[ j ]z− j

1+
2∑

j=1
a[ j ]z− j

(4.12)

Given a pseudo-random process F [k] and the recursive relation defined earlier with the coefficients a[k], b[k], we

calculate u[k], which represents the simulated contribution of the violin mode to the detector’s output.

u[k] =
2∑

j=0
b[ j ]F [k − j ]−

2∑
j=1

a[ j ]u[k − j ], (4.13)

To generate the signal containing the violin peak, we first define a reduced centered Gaussian noise that will serve as

the basis for the peak, and whose mean will be used to define the PSD reference frame. From another reduced centered

Gaussian noise, we’ll generate the signal containing the violin peak, which we’ll add to the base noise.
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Figure 4.2: Base noise + violin peak PSD

Figure 4.3: Superposition of Base noise and violin peak on time
domain

The desired frequency of the peak corresponds to the first peak on the figure 3.14, i.e. 173 Hz. Figure 4.2 represent

the PSD of the basic noise with and without the violin peak. The peak (that we might call suspension thermal noise,

violin peak or even violin noise from now on) is well located at the desired frequency, with a definition of 0.03 Hz. The

figure 4.3 shows the temporal representation of the basic noise and the signal containing only the peak. Firstly, the

signal containing the noise is of greater amplitude than the violin peak, which is similar to the 3.11 in the sense that the

violin noise should not be prominent on the signal in terms of amplitude.

In order to achieve the same conditions as for KAGRA, we use a signal sampled at fs = 16kHz. The problem is that

we’re trying to suppress a frequency at 173 Hz, and using a signal with too high a sampling frequency only risks altering

the data at frequencies beyond 173 Hz. To describe this maximum frequency, we use the Nyquist frequency FN defined

as:

FN = fs

2
(4.14)

The Nyquist frequency is used to define the maximum frequency (Fn) that a signal must contain to enable it to be

described unambiguously by sampling at regular intervals at a sampling frequency fs . We decided to decimate the

signal, i.e. downsample and then apply an anti-aliasing filter, at 2kHz (2048Hz) because, even if the first peak is still at

173 Hz the third harmonics are around 800Hz and we want the method to be any peak of any harmonics.

Another objective is to implement the SCINet model on the KAGRA livestream (with is sampled at 16384Hz), which

updates every second, so we’ve tried to work with signals of more than one second at most. As a result, the dataset used

as input data for SCINet is made up of signals sampled at 2kHz, whose temporal duration has yet to be determined,

comprising base noise, a reduced-centered Gaussian noise, plus violin noise at 173 Hz. The comparison data, the

ground truth, is the same signal, but without the violin noise.

At this stage, the notion of noise refers to the gaussian with a 10 dB amplitude in figure 4.2 and signal noise refers to

the violin peak (Fig 4.2), although in KAGRA both are considered noise. Therefore, the main goal now is to reduce the

signal (the peak) over the base noise.
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4.3 Loss function

Originally, SCINet was used for time-series prediction. That’s why, in their article [8], the authors choose the input

window size as drastically larger than the output size, because the aim is to predict future values. In our case, if the

input signal is larger than the output signal, then there would be a loss of information due to the reduction in signal

duration, and if the output signal was larger, then there would be an extrapolation of the signal beyond one second,

which is not what we want. Moreover, to compare the two signals, it is easier if they are the same size. That is why we’ve

chosen the same size for the entry and output signal.

The STFT equation for a signal x is given by:

STFT{x}(τ,ξ) =
∫ ∞

−∞
x(t )w(t −τ)e−i 2πξt dt (4.15)

For the discrete STFT, the result is a two-dimensional array containing:

• On each line: the variation in intensity of a given frequency over time

• On each column: a Fourier transform of the window in question

Like the Fourier transform, STFT is a complex signal. To facilitate visualization, we use the spectrogram defined as

square the absolute value of the STFT:

Spectrogram{x}(m,ξ) = |STFT{x}(m,ξ) |2 (4.16)

To define the loss function, we calculate the STFT of the input signal and the output signal. Since STFT is a complex

two-dimensional signal, this means controlling the evolution of the phase and modules of the transform over time

which are represented in figures 4.4 and 4.5.

Figure 4.4: Absolute value of the FFT Figure 4.5: Angle of the FFT

Differentiating these two STFT gives us our loss function (with τ the length of the signal):

L(x, y) = 1

τ

FN∑
f =1

T∑
t=1

∣∣STFTx ( f , t )−STFTy ( f , t )
∣∣ (4.17)

If the number of stacks in SCINet is equal to k > 1, we define the loss function as the sum of the loss function at

each layer :

L(x, y) =
K∑

k=1
Lk . (4.18)
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This approach has numerous advantages comparing others:

• Compared to the signal comparison as such: this accentuates the comparison on the violin peak, which is not

identifiable as such on the signal.

• Compared to the Fourier transform: This allows us to see the SCINet effect over time, unlike the Fourier transform,

which gives the frequency peak over one second of signal. We could have partial false corrections on parts of the

signal that cancel out over the whole duration.

• Compared to the study of the peak at the given frequency: this prevents the system from focusing exclusively on

the peak and affecting other frequencies. We want the system to reduce the peak, but we don’t want the other

frequencies to change, as this would create noise that we wouldn’t be able to model and interpret.

This method can only be used to compare signals of the same length and sampling frequency fs , which is not a

problem in our case, given the measures taken.

4.4 Model training

To avoid having to handle quantities that are too small and therefore having huge weights, the input signal is renormal-

ized by dividing it by the noise standard deviation, allowing us to work with values of the order of unity.

We split a 70%, 30% between training and test data. We trained the model with a dataset containing T = 500,000

bins (≈ 244 seconds). The signals from all τ bins are subsamples of the form x[t , t +τ] with t ∈ [0,T −τ] with T the

length of the dataset. We split a 70%- 30%, between training and test data. A batch size of 16 was used, along with a

decreasing learning rate of 0.009.

Figure 4.6: Performance comparison by signal length

For model hyper-parameters, there are:

• The size of the signal, and therefore the number of SCINet input pins. This is the first hyper-parameter we wanted

to deal with, to see if there was any interest in taking a larger signal, and therefore having a higher computational

cost. Figure 4.6 shows the variations in training and test errors over the epochs. We can see that size does indeed

influence the loss function, and that after a certain number of epochs, a larger size brings a better test error.

• The size of the kernel k of convolutions φ, ψ, ρ, η in SCI-block defined in the Section 4.1.1.

• The number of level in the SCINet structure in every SCINet, defined in Section 4.1.2.

• The number of stacks defined of the stacked SCINet structure, defined in Section 4.1.3.
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Figure 4.7: Performance comparison when the number of stacks is equal to 2

Figure 4.7 highlights overfitting when stacking SCINet models. This can be explained by the fact that, after the

first SCINet, the output signal becomes the input signal for the second SCINet which leads to the application of a new

SCINet on an extrapolated signal. Initially, this stacked SCINet model is useful for short-term prediction, taking long

input signals to predict small output signals. This made it possible to have an input signal composed mainly of real

data for stacked models.

Figure 4.8: Performance comparison with different kernel size k and number of layer l

We tried different core sizes and different numbers of layers to find the best model. We trained different models as

shown in figure 4.8. These hyper-parameters play minor role in the results of the test function as we can see the same

behavior for every curve and similar results. We kept the model that gave us the best results after 50 epochs, i.e. a kernel

size of 8 and a number of layers of 2 represented by the large orange dotted line.

We then train the chosen model over a larger number of epochs (200), and the model converges after around 100

epochs, as seen in figure 4.9. In this sub-section, all results will be produced by this model unless otherwise indicated.
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Figure 4.9: The number of layer is 2, kernel size is equal to 8 and there in only 1 stack of SCINet model
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5 Suspension Thermal Noise Reduction

5.1 One peak suppression

In this section we’ll focus in more detail on the effect of SCINet on peak suppression. As mentioned above, we’ve used

the Short Time Fourier Transform, but to compare signal pairs in more detail, we’ll look at the signal-to-noise ratio

(SNR) defined as follows in the section 3.2.3. We replace the noise PSD by the signal’s Gaussian noise, and the template

by the violin peak signal at 173 Hz (without base noise).

Figure 5.1: Example of SNR Calculation by plotting the norm of
Fourier Transforms Figure 5.2: SNR Distribution before/after SCINet

Figure 5.10 highlights the impact of SCINet on the Signal-to-Noise Ratio (SNR), specifically focusing on the reduction

of suspension thermal noise within the dataset. The SNR distribution clearly shows a significant shift before and after

the application of SCINet, with the orange distribution representing the post-SCINet SNR values being much lower

than the blue distribution representing the initial SNR values. This reduction indicates a successful mitigation of the

thermal noise, which is characterized by high SNR peaks that can obscure the underlying signal of interest.

To analyse a signal longer than one second, we split a 50-seconds signal into 50 samples, each of which we then ran

through SCINet before reconstructing the signal by concatenating each of the sub-signals.

This step-by-step reconstruction allows for a precise observation of how SCINet processes each segment, and in

turn, how the model reconstructs the overall signal.

The main objective of applying SCINet in this context is to attenuate the suspension thermal noise, which is known

to contribute intensely to the overall noise within the data. This noise appears as sharp and prominent peaks in the

Fourier spectrum (see Figure 5.10), complicating the interpretation of the signal. By using SCINet, these peaks are

effectively reduced, resulting in a much flatter SNR distribution and hence a cleaner signal.

The absence of outliers in the post-SCINet distribution is crucial, as it indicates that SCINet not only reduces the

overall noise levels but does so consistently across different segments of the data. To better understand the efficiency of

SCINet, a single random signal from the dataset will be used as an example.

To better analyze the influence of SCINet for the suspension reduction, we have shown in figure 5.3 the absolute

value of the Fourier Transform of the input signal, the suspension reduction signal, as well as the ground truth and

the difference between the model output and this ground truth, each with a 50 seconds length. These visualizations

highlight the effects of the model on the processed signal.

The first line, corresponding to the FFT graphs, is the evolution of the peak at 173 Hz. This peak is clearly attenuated

by SCINet. The desired effect is achieved: no other unwanted frequencies appear under the effect of SCINet, indicating
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Figure 5.3: FFT Absolute value of the entry signal, the output, the ground truth

that the model is able to effectively target a specific frequency while preserving the other frequency components of the

signal.

The figure 5.3 also reveals that no additional peaks were generated at frequencies other than 173 Hz since the

suspension reduction signal overlaps the entry signal, confirming that the model has indeed modified only the desired

frequency component. However, one problem persists, we can see that there is some residual. By looking closely at the

second and third plots, we notice that the suspension peak is overcorrected. Instead of corresponding to the ground

truth, the frequency component at 173 Hz is reduced to almost zero, which was not the desired effect. There are also

slight fluctuations in the surrounding frequencies, but of relatively low amplitude. This indicates that SCINet could

sometimes apply too drastic a correction to certain frequencies, requiring adjustment so as not to degrade non-target

frequencies.

This result highlights both SCINet’s strength in effectively targeting specific frequencies such as 173 Hz, but also its

limitations in correction dosage. To improve performance, it might be necessary to introduce a regulation mechanism

or additional filtering to limit the amount of reduction applied. The drastic reduction of SNR across the peaks confirms

that SCINet consistently suppresses the suspension thermal noise. Consequently, this example reflects the general

effect of SCINet on the dataset as a whole, leading to a substantial improvement in the signal quality by significantly

reducing the thermal noise that would otherwise dominate the signal spectrum.
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5.2 Two peak suppression

As part of this study, we set out to evaluate the influence of SCINet on two sufficiently close peaks, in order to understand

the potential impact of the model when applied to neighboring frequencies. To do this, we selected the second peak in

KAGRA’s PSD visible in figure 3.14, which lies at around 174 Hz. This exercise is particularly relevant because SCINet

is designed to effectively suppress frequency peaks and adjacent bands around these peaks, even when the peaks

are thin. However, when it comes to peaks that are sufficiently close together, a problem can arise: the model risks

not only suppressing the targeted peaks, but also affecting their spectral neighborhoods, thus generating unexpected

disturbances in the intersection of neighborhood zones.

Figure 5.4: PSD of the 2-peak signal

The figure 5.4, corresponding to the image presented here, clearly illustrates this phenomenon with two closely

spaced peaks at around 173 Hz and 174 Hz. The aim is to check whether SCINet can handle such cases accurately

without introducing major distortions in the surrounding frequencies or causing excessive suppression of the frequency

bands between the two peaks. To avoid affecting the intermediate region between the two peaks, we apply SCINet to

these two peaks in sufficiently close proximity, while carefully monitoring the model’s response in this critical area.

Figure 5.5: FFT Absolute value of the entry signal, the output, the ground truth
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Figure 5.5 corresponds to the magnitude of the Fourier transforms for a signal with two overlapping peaks. As in the

previous section, once the signal is segmented, each piece is individually passed through the SCINet model to handle

the 173Hz and 174Hz peaks. After that, we can reconstruct the initial signal and see its properties

First of all, we notice that the two peaks have been considerably reduced, as has the area of intersection between

them. However, we note that the signal suspension reduction presents small peaks at around 172 Hz, demonstrating

SCINet’s difficulty in processing overly complex signals.

Such modifications may seem insignificant, but given that the aim is to apply SCINet to the signal several times,

they could lead to propagation errors, which should be avoided at all costs, given that there are around 30 peaks per

harmonic. Given that the signal is more complex, a more complex model might have been more appropriate, by

repeating the procedure used to select the 1 peak system, but for lack of time we were unable to do so.

Figure 5.6: SNR Distribution before/after SCINet

Looking at the SNR distribution before and after suspension reduction, we can see that there is still a drastic

reduction of the SNR, as in the previous section. It’s important to note that the SNR scale is not the same as in figure

5.10, which is due to the fact that the presence of two peaks pulls this SNR downwards.

We obtain the same characteristics as in section 5.1, i.e. a reduction of the signals and, in this case, of the two peaks,

as well as an absence of outliers in the final distribution, which means that the model has reduced all the thermal

suspension noise on all the signals, whatever the peak intensity. Although it added more noise, the more complex

pattern of the peak was deciphered by SCINet, which was able to reduce the SNR.
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5.3 Gravitational waves incidence

To generate a gravitational wave, we’ll use GW150914’s gravitational wave template to which we’ll add the base noise

and the violin peak at 173Hz, to give figure 5.7.

Figure 5.7: Template of GW150914 + base noise + violin peak

When we look at the peak in the Fourier transform (cf Fig 5.8), it has been suppressed as before and the rest of the

signal has been preserved, whether at 173 Hz or at more distant frequencies.

Figure 5.8: FFT Absolute value of the entry signal, the output, the ground truth

Another way of quantifying the effect of SCINet is to calculate the SNR by shifting the model signal by one time step

to obtain the instant of detection. This method is used to estimate the various parameters of the bodies that generated

the gravity wave.

The aim is to compare the SNR obtained before the addition of the violin peak with that obtained after the passage

of SCINet. The closer the SCINet SNR is to the initial SNR, the less information about the gravitational wave will be

removed.

The two SNR peaks are obtained at the 26th second, which already means that SCINet has not applied a time shift.

The value of the original signal is 48.2 and that of the signal after SCINet is 47.9. This means that there is indeed a loss of

signal in relation to the passage of SCINet.
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Figure 5.9: SNR over time of base noise and the gravitationnal
wave

Figure 5.10: SNR over time of the SCINet output
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6 Conclusion

This report presented a comprehensive survey of gravitational waves, from their theoretical foundations to the practical

advances made possible by detectors such as LIGO, Virgo and KAGRA. After exploring the operation of gravitational

interferometers and the challenges posed by suspension noise, particularly within the KAGRA experiment, the focus

was on noise reduction techniques, in particular the suppression of thermal resonance peaks.

However, one of the key contributions of this work lies in the application of machine learning methods to the

processing of detector data. Using SCINet, we have demonstrated the potential of deep learning to improve the

detection and conditioning of gravitational data. The proposed model not only makes it possible to process efficiently

the large quantities of data produced by interferometers, but also to better filter and analyze signals disturbed by

suspension thermal noise.

The integration of machine learning in the field of gravitational waves represents a promising step forward. This

work has highlighted the ability of these algorithms to identify subtle patterns in the data, be it one, two peaks or even a

gravitational wave, paving the way for finer analysis and faster, more accurate detection of gravitational events. What’s

more, these tools can be used to generate synthetic datasets to simulate various scenarios and test new hypotheses,

which is crucial for the ongoing improvement of detectors.

The results obtained show that the machine learning approach can make a significant contribution to improving

the performance of current and future detectors. With prospects for continued technological evolution, it is likely that

these methods will play a central role in the exploitation of gravitational data and the discovery of new astrophysical

phenomena.

Future avenues of improvement would be to simulate real KAGRA noise, without the suspension thermal noise to

be able to have a ground truth, and then add the violin noise to train a SCINet model on it. It would also have been

interesting to apply different SCINet models to the 30 or so KAGRA peaks, to try and remove them in small groups and

then reconstruct the signal.

In conclusion, this report highlights not only the advances made in gravitational wave physics, but also the growing

importance of artificial intelligence techniques in this field. The work carried out paves the way for a wider integration

of these approaches in future generations of detectors, promising even more significant discoveries in the years to come.

39



Suspension Thermal Noise Reduction in GW interferometers Pierre CAVALIER

References

[1] B. P. Abbott et al. “Observation of Gravitational Waves from a Binary Black Hole Merger”. In: Phys. Rev. Lett. 116

(6 Feb. 2016), p. 061102. DOI: 10.1103/PhysRevLett.116.061102. URL: https://link.aps.org/doi/10.

1103/PhysRevLett.116.061102.

[2] H Abe et al. “Performance of the KAGRA detector during the first joint observation with GEO600 (O3GK)”. In:

Progress of Theoretical and Experimental Physics 2023.10 (June 2022). ISSN: 2050-3911. DOI: 10.1093/ptep/

ptac093.

[3] S Chatterji et al. “Multiresolution techniques for the detection of gravitational-wave bursts”. In: Classical and

Quantum Gravity 21.20 (Sept. 2004), S1809–S1818. ISSN: 1361-6382. DOI: 10.1088/0264-9381/21/20/024.

[4] A. Einstein and N. Rosen. “On gravitational waves”. In: Journal of the Franklin Institute 223.1 (1937), pp. 43–54.

ISSN: 0016-0032. DOI: https://doi.org/10.1016/S0016-0032(37)90583-0.

[5] Lee Samuel Finn and Soma Mukherjee. “Data conditioning for gravitational wave detectors: A Kalman filter for

regressing suspension violin modes”. In: Physical Review D 63.6 (2001), p. 062004. URL: https://arxiv.org/

abs/gr-qc/0009012.

[6] Raban Iten et al. “Discovering Physical Concepts with Neural Networks”. In: Physical Review Letters 124.1 (Jan.

2020). ISSN: 1079-7114. DOI: 10.1103/physrevlett.124.010508.

[7] Guokun Lai et al. Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks. 2018. arXiv:

1703.07015 [cs.LG].

[8] Minhao Liu et al. SCINet: Time Series Modeling and Forecasting with Sample Convolution and Interaction. 2022.

arXiv: 2106.09305 [cs.LG].

[9] Michele Maggiore. Gravitational Waves. Vol. 1: Theory and Experiments. Oxford University Press, 2007. ISBN:

978-0-19-171766-6, 978-0-19-852074-0. DOI: 10.1093/acprof:oso/9780198570745.001.0001.

[10] Michele Maggiore. Gravitational Waves. Vol. 2: Astrophysics and Cosmology. Oxford University Press, Mar. 2018.

ISBN: 978-0-19-857089-9.

[11] Florent Robinet et al. “Omicron: A tool to characterize transient noise in gravitational-wave detectors”. In:

SoftwareX 12 (July 2020), p. 100620. ISSN: 2352-7110. DOI: 10.1016/j.softx.2020.100620.

[12] Seiya Sasaoka. “Applications of convolutional neural network and Hilbert-Huang transform to gravitational-wave

data analysis”. In: Department of Physics, Tokyo Institute of Technology (2024, FY2023). URL: https://www.

gravity.phys.titech.ac.jp/thesis.html.

40

https://doi.org/10.1103/PhysRevLett.116.061102
https://link.aps.org/doi/10.1103/PhysRevLett.116.061102
https://link.aps.org/doi/10.1103/PhysRevLett.116.061102
https://doi.org/10.1093/ptep/ptac093
https://doi.org/10.1093/ptep/ptac093
https://doi.org/10.1088/0264-9381/21/20/024
https://doi.org/https://doi.org/10.1016/S0016-0032(37)90583-0
https://arxiv.org/abs/gr-qc/0009012
https://arxiv.org/abs/gr-qc/0009012
https://doi.org/10.1103/physrevlett.124.010508
https://arxiv.org/abs/1703.07015
https://arxiv.org/abs/2106.09305
https://doi.org/10.1093/acprof:oso/9780198570745.001.0001
https://doi.org/10.1016/j.softx.2020.100620
https://www.gravity.phys.titech.ac.jp/thesis.html
https://www.gravity.phys.titech.ac.jp/thesis.html

	Introduction
	Gravitational Waves Physics
	Gravitational theories
	Definition of Gravitational Waves

	Gravitational Waves Observatory: LIGO-VIRGO-KAGRA
	Michelson Interferometer Principle
	KAGRA Experiment
	Hardware
	Focus: Seismic Isolation System
	Strain measurement
	Thermal suspension noise

	First discoveries
	Event GW150914
	Event GW170817


	Data Processing by Machine Learning
	Architecture
	SCI-Block (a)
	SCINet (b)
	Stacked SCINet (c)

	Strain dataset generation and conditioning
	Loss function
	Model training

	Suspension Thermal Noise Reduction
	One peak suppression
	Two peak suppression
	Gravitational waves incidence

	Conclusion

